
KEMP:
Korea University’s
ElectroMagnetic Propagator

Nano Optics Lab.

Myung-Su Seok

Introduction of KEMP

1. FDTD simulation software

FDTD (finite-difference time-domain) : Numerical analysis technique used for modeling

computational electrodynamics

2. using CPU & GPU as computing device

(KEMP is designed to support various computing devices)

programming language for core engine: C (CPU), CUDA (NVIDIA GPU), OpenCL(AMD GPU,

Intel MIC)

Optimization of CPU, NVIDIA GPU : completed

AMD GPU : available

Intel MIC : to be supported later

3. Specialized to massive computation

Enabled Multi-node computing by using MPI(Massage Passing Interface)

Optimized parallel overhead by overlapping computation method

4. Python package

KEMP can be used by writing and executing python script

GUI : to be supported later

GPGPU:
General-Purpose computing on Graphic Processing Units

GPU : Graphic Processing Unit

Designed for graphic computation

(High-resolution video, game)

-> Specialized High parallel computation

Examples of GPGPU

1. Deep learning

2. GPU accelerated science

3. Cloud (Grid computing) / Virtualization

FDTD acceleration using GPU

Ki-Hwan Kim, et al.,

Performance analysis and optimization of

three-dimensional FDTD on GPU

using roofline model

Computer Physics Communications 182 (2011)

Summary

1. High parallelism of FDTD algorithm
-> Enhancement of computation speed

2. Prediction and verification of Theoretical
Limit for FDTD computing performance using
GPU

KEMP has 90% of the theoretical limit of
FDTD computation performance

Overlapping computation method

Summary

1. boundary communication time main-region
computation
-> High overhead from parallel computation with multi-
node using GPUs
2. communication and computation can be executed at the
same time
-> Theoretical limit of parallel computation can be
achieved

KEMP has 85% of the theoretical limit of FDTD
computation performance

1 2 3 4
0

1

2

3

4

5

Th
ro

ug
hp

ut
 (G

po
in

t/s
)

Number of MPI nodes

 Upper limit (C2075)
 MPI nonblocking (C2075)
 Host-buffer (C2075)

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
 (G

po
in

t/s
)

Number of MPI nodes

 Upper limit (TITAN)
 MPI nonblocking (TITAN)
 Host-buffer (TITAN)

Overlapping Computation time (GPU) &
Communication time (Network)
Ki-Hwan Kim, et al.,
Overlapping computation and
communication of three-dimensional FDTD
on a GPU cluster
Computer Physics Communications 183 (2012)

User interface
1. 3D-FDTD space

1.1. Python module ‘KEMP’ load

1.2. setting space parameters

1.3. generation of 3D-FDTD

1.1. Python module ‘KEMP’ load
KEMP can be loaded simply by input “import KEMP” (line 5)

1.2. Setting FDTD space parameters
To set a 3D-FDTD space, minimal unit of spatial length and discritized space grid have to be set up

1.3. generation of 3D-FDTD environment
Generate 3D-FDTD environment using information of space grid and field data type (np.float32 means single-precision float,
KEMP supports single and double precision float and complex numbers: numpy.float32, numpy.float64, numpy.complex64,
numpy.complex128)

User interface
2. Boundary condition of 3D-FDTD

2.1. PML(Perfectly Matched Layer)
Perfectly matched layer is the boundary condition perfectly absorbing incident EM-waves without any
reflection. We can set the closed 3D-FDTD space to infinitely open space by setting PML the FDTD space
boundaries. PML can be applied to each 3 axes and 2 directions, total 6 boundaries.

2.2. PBC(Periodic Boundary Condition)
To calculate light-matter interaction of infinitely periodic material structure, KEMP support periodic
boundary condition. PBC can be applied to axes independently. If the field data type is complex number,
PBC is expanded to Bloch boundary condition (BBC) automatically.

2.1. applying PML boundaries

2.2. applying PBC boundaries

User interface
3. Material structures

3.1. Material generation

3.2. Design
structures

3.3. apply the structures to FDTD space

3.1. Material generation
KEMP supports various electromagnetic materials : lossy dielectric (complex ε), lossy dimagnetic (complex ε),
lossy Dielectromagnetic(ε, μ), electric dispersive meterials(Drude, CP, …). (magnetic dispersive material and
electromagnetic dispersive material will be supported later)

3.2. Design of material structures
We can design the shape of materials at section 3.1. KEMP supports 3D space structures(box, elliptic cylinder,
ellipsoid, pyramids).

3.3. Applying prepared structures to 3D-FDTD space.
We can set material structures order and apply to FDTD structures by
FDTD_space.set_structures(list_of_structures)

User interface
4. Wave source condition

4.1. Source 설정

4.2. FDTD Source 생성

4.1. Source
Incident wave source conditions.

4.2. Setting FDTD Source
We have to set the region of being applied incident wave sources (before time loop calculation).

User interface
5. Time loop + getting field data

5.1. Time Loop & get field data

5.2. Export field data to hdf5 files

5.1. FDTD Time Loop & get field data
In the time loop of FDTD calculation, .
(1) applying incident wave source values to field data.
(2) EM wave propagation (fdtd.updateE, fdtd.updateH)
(3) Get time-line field data

5.2. Export FDTD field data to hdf5 files
Electromagnetic fields(fdtd.{ex, ey, ez, hx, hy, hz} operate like python numpy arrays. Therefore we can get
field data of certain region. The data can be exported to Hierarchical Data Format ver.5 (hdf5) files.

User interface
6. Execution of python script (Desktop PC)

1.1. Python module ‘KEMP’ load

6.1. FDTD space parameter

6.2. 3D FDTD gen.
6.3. choice of devices
(case of using GPU)

6.1. choice of computing device
We can choose computing devices by setting the engine parameter and device id. device_id is ignored in
the case of using CPUs.
Because multiple GPUs can be arranged in one workstation, KEMP supports multiple GPUs by setting
device_id parameter. If multiple devices are chosen, the computation performance is greatly enhanced.
KEMP recommend to use same devices because of the devices assigned 3D-FDTD space into equal parts.

6.2. Execution of the script
We can execute the FDTD calculation by execution of python script.
$ python KEMP_example.py

User interface
7. Execution of script applying MPI interface (cluster computers)

1.1. Python module ‘KEMP’ load

7.2. FDTD space parameter

7.3. 3D FDTD generation

7.1. Setting MPI parameter

7.1. Setting MPI parameter
We can set MPI_extension parameter of 3D-FDTD space to following options. (default value is False)
1. ‘block’ : blocking communication mode is on.
2. ‘nonblock’: nonblocking communication mode is on.

Computation speed is enhanced compared with ‘block’ option.
3. ‘overlap’: overlapping computation mode is on. (technically uses nonblocking communication mode)

communication delay is hided in calculation time of main-region.
7.2. Execution the script

Execution by using MPI on Linux shell environment.
$ mpirun –np 3 –host y201 y202 y203 python KEMP_example.py

Information of KEMP & Download

Main page of KEMP

http://nol.korea.ac.kr/kemp.html

Tutorial & User guide

http://nol.korea.ac.kr/kempguide.html

Download

http://sourceforge.net/projects/kemp/?source=directory (Sourceforge link)

http://sourceforge.net/projects/kemp/?source=directory

	KEMP:�Korea University’s�ElectroMagnetic Propagator
	Introduction of KEMP
	GPGPU:�General-Purpose computing on Graphic Processing Units
	FDTD acceleration using GPU
	Overlapping computation method
	User interface�1. 3D-FDTD space
	User interface�2. Boundary condition of 3D-FDTD
	User interface�3. Material structures
	User interface�4. Wave source condition
	User interface�5. Time loop + getting field data
	User interface�6. Execution of python script (Desktop PC)
	User interface�7. Execution of script applying MPI interface (cluster computers)
	Information of KEMP & Download

